
1.  Introduction
Hyporheic exchange flow (HEF) is the flow of surface water in streams and rivers that enters the subsurface 
zone, and after some time, returns to the surface (e.g., Boano et al., 2014; Cardenas, 2015; Harvey & Benca-
la,  1993). Since hyporheic exchange velocities are considerably slower than the surface water velocity, HEF 
causes retention of stream water and solutes traveling with the water (e.g., Cardenas, 2008; Runkel, 2002; Wör-
man et al., 2002). Furthermore, this mixing zone of groundwater and surface water provides essential habitats 
for many types of benthic organisms and enhances biogeochemical reactions (e.g., Boano et al., 2014; Jones & 
Mulholland, 2000). Even though great progress has been made to understand the hyporheic zone and its impact 
on transport in streams and rivers, previous research on HEF has struggled to progress from interpreting relevant 
processes to predicting them under different conditions (Ward & Packman, 2019), which could be valuable for 
well-targeted stream restoration efforts (Dufour & Piégay, 2009; Ward et al., 2001). One obstacle to overcome to 
achieve such an advancement, as identified in Ward and Packman (2019), relates to the poorly understood scale 
dependency of HEF, where the subsurface flow observed at a specific point in the landscape is part of a hierar-
chic flow system that acts within a wide range of spatial and temporal scales (Tóth, 1963; Wörman et al., 2007). 
Another obstacle relates to the site- and time-specific nature of in situ observations of hyporheic exchange, which 
makes it complicated to compare results from different studies and to move forward toward a more common 
conceptual understanding of HEF.

Among other methods, in-stream tracer tests have traditionally been used to quantify HEF. The tracer tests are 
evaluated using solute transport models, which conceptualize HEF as a temporary storage of stream water flow. 
Tracer tests are a direct measurement of the fate of conservative or reactive solutes at the reach scale, which is 
valuable information, for example, for water managers. Furthermore, the mathematical framework of a solute 
transport model provides means for upscaling and implementation of the results in compartment stream network 
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models (Riml & Wörman, 2011). Early developed transport models with temporal storage assumed that the main 
channel was connected to a well-mixed transient storage zone and that there was a first-order transport of mass 
between the two zones (Bencala & Walters, 1983). Furthermore, the considerably lower transport times in the 
storage zone compared to those in the main channel were defined by an exponential residence time distribution 
(RTD). Subsequently, model development led to a relaxation of the exponential RTD. Instead, numerous models 
has been proposed in which the associated predefined RTD, in one or several storage zones, has been allowed 
to take other statistical forms (e.g., Briggs et al., 2009; Gooseff et al., 2003; Haggerty et al., 2002; Wörman 
et al., 2002). However, as the number of model parameters increases, the model calibration toward tracer test 
breakthrough curves (BTCs) may improve, but the prediction uncertainty worsens due to non-uniqueness of pa-
rameter values and equifinality. To obtain reliable model parameter sets, there is thus a need to perform independ-
ent measurements of some of the included parameters to constrain the model (Bottacin-Busolin, 2019; Briggs 
et al., 2009). Furthermore, regardless of the complexity, solute transport models often suffer from a somewhat 
unclear physical basis for the HEF-characterizing parameters, which prevents parameters estimated in one stream 
from being readily transferred to other streams or even the same stream in another hydraulic regime (Harvey 
et al., 2003, 1996; Knapp & Kelleher, 2020).

Previous studies have related HEF parameters in solute transport models to physical stream characteristics that 
can be measured in situ, using scaling laws. The average hyporheic residence time has for example, been related 
to the Froude number (Salehin et al., 2003; Sawyer et al., 2011; Wörman et al., 2002) and to measures of geo-
morphological complexity such as reach slope, streambed concavity, and sinuosity (Boano et al., 2006; Gooseff 
et  al., 2007). Measures that reflect both geomorphology and in-stream hydraulics, such as stream power and 
the Darcy-Weisbach friction factor, have also been shown to be useful for explaining HEF parameters (Harvey 
et al., 2003; Zarnetske et al., 2007). Furthermore, in conditions where turbulent diffusion composes an important 
exchange mechanism, the exchange rate has been related to different versions of the Reynolds number (Grant 
et al., 2018; O'Connor & Harvey, 2008; Packman et al., 2004). Another suggestion for an improved conceptual 
understanding and a better physical explanation for HEF parameters in solute transport models is to compare 
model parameters assessed from tracer tests with other models, preferably models with a clear physical basis 
(Knapp & Kelleher, 2020).

In contrast to the inductive approach of assessing tracer tests using general solute transport models to quantify 
HEF, a deductive approach is to use physically based models that centers on physical laws and assumptions re-
garding the main mechanisms controlling hyporheic exchange (Boano et al., 2014). Under steady conditions, the 
most investigated control of HEF is the longitudinal variation in the hydraulic head at the streambed interface, 
which is often divided into a static part and a dynamic part. The static head part represents the effect of stre-
ambed elevation and stream depth, and the dynamic head part represents the conversion of the velocity head to 
the pressure head due to the water flow acceleration at the streambed (Boano et al., 2014). Although the research 
community has a conceptual idea regarding in which type of conditions static or dynamic head gradients predom-
inate, there is no clear method for describing the transformation from dominance of one head type to dominance 
of another head type in natural streams (Tonina & Buffington, 2007; Wondzell et al., 2019). Since these two 
mechanisms occur simultaneously and scale differently with discharge and geomorphology, it is important to 
consider both to obtain functional scaling laws or parameterization methods for HEF parameters in general solute 
transport models. Furthermore, to capture the entire distribution of hyporheic pathways observed with a tracer 
test, the multiscale nature of hyporheic exchange can probably not be disregarded.

The fact that HEF occurs over a wide range of spatial scales can be considered through spectral analysis of ge-
omorphological data, which makes it possible to identify periodicity within a data series and to understand the 
importance of different spatial scales by the decomposition of the data series into simpler parts. Using this ap-
proach, an exact solution to groundwater flow, including HEF, was presented in Wörman et al. (2006). The model 
was based on superpositioning principles, and the hydraulic head boundary condition at the streambed interface 
was expressed by a real Fourier sum. This modeling approach, or slightly modified versions, has subsequently 
been applied to study HEF in many different settings, such as in natural streams (Marzadri et al., 2014; Mojarrad 
et al., 2019; Morén et al., 2017; Stonedahl et al., 2012), in flumes (Aubeneau et al., 2015; Lee et al., 2020), and 
along generic reaches (Herzog et al., 2019). A few previous studies have compared the spectral method with 
tracer test evaluations and have achieved good results. In Wörman et al. (2006), the hyporheic zone RTD was 
derived with a particle tracking routine through the calculated velocity field of a 50 m long reach of Sugar Creek, 
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Indiana, U.S.A, showing agreement with the RTD obtained from a tracer test evaluation. Furthermore, the hy-
porheic exchange velocity calculated using a physical, multiscale model was slightly lower than the equivalent 
parameter evaluated from a tracer test in a small, Swedish, agricultural stream (Morén et al., 2017). Additionally, 
in Stonedahl et al. (2012), a developed mechanistic model was tested in a real stream and compared with a tracer 
test, showing that the mechanical model results agreed well with the tracer test results, although the former ap-
proach captured longer timescales. A general limitation of physically based models is the large amount of data 
that are often needed to parameterize them, and the subsequent difficulty of capturing head gradients over short 
spatial scales. With a multiscale model approach, scales smaller than the measured scales can possibly be in-
cluded by assuming that the fractal streambed geomorphology can be extrapolated over the non-measured scales 
(Mojarrad et al., 2019; Morén et al., 2017).

The aim of this study was to cross-validate two common but fundamentally different methods to evaluate key 
HEF parameters in 10 small Swedish streams with different hydrogeomorphological characteristics. The first 
method consisted of stream tracer test assessments using a general solute transport model accounting for HEF, 
specifically, the advective-storage-path (ASP) model developed in Wörman et al. (2002). The second method is 
based on measurements of topography and surface water elevation, which served as input for a 2D semi-analytical 
hydromechanical (HM) model, describing HEF across a multitude of spatial scales (Morén et al., 2017; Wörman 
et al., 2006). The term cross-validation here refers to testing the possibility of agreement between those two ex-
tensively different approaches for calculating HEF, which hypothetically indicates robustness of both approaches 
and provides a link between the general HEF parameters of the ASP model and the physically based parameters of 
the HM model in the investigated streams. Because the investigation was performed in 10 different stream reaches 
with different characteristics, from low-slope agricultural ditches to moderately steep, gravel-bed, forest streams, 
the comparison adds to the generalization of previous studies and provides an assessment of the model suitability 
in different types of streams. The second aim of this study was to show how the HM model could account for a 
decomposition of the HEF across a wide range of spatial scales and the implications this approach had on the 
cross-validation results. We investigated which spatial scales and HEF drivers are the most important to consider 
when modeling hyporheic exchange under different conditions and tested the effect of including smaller spatial 
scales than those measured in the stream.

2.  Methods
In this study, hyporheic parameters were derived using two different models that reflect two considerably differ-
ent approaches to quantify HEF. We used the HM model to deduce HEF parameters from independent data, and 
the ASP model to induce the same parameters from stream tracer tests. An extensive field survey was performed 
to collect relevant data for the two approaches. The results were then cross-validated by comparing the deduced 
HEF parameters with the induced HEF parameters within model sensitivity intervals. The HM model was also 
utilized to investigate how static and dynamic head driven HEF varies across different spatial scales and between 
10 reaches of different hydromorphology.

2.1.  Field Measurements and Data Analysis

Field measurements were performed in 10 small Swedish streams with varying characteristics and included 
rhodamine WT (RWT) tracer tests, topographic surveys and streambed hydraulic conductivity measurements. 
The reaches, whose length range between approximately 200–500 m, along the stream thalweg, where located 
in five different catchments. The catchments included both agricultural areas and coniferous and mixed forests, 
and the stream reaches had different geomorphological characteristics, defined through the average slope, E S (−), 
sinuosity E s (−), and qualitative assessments of the streambed material (Table 1).

2.1.1.  Tracer Tests

In each stream reach, a tracer test was performed, using RWT and in situ submersible fluorimeters (Cyclops 
C7, Turner Designs, Inc., U.S.A.). The tracer was added to the stream water column as a slug injection, and two 
fluorimeters, positioned upstream and downstream of the reach, registered the BTC for at least 48 h. The tracer 
tests were designed to achieve complete mixing within the stream cross-section at the point of the upstream meas-
uring site and with a duration that allowed for capturing the tails of BTCs. The shape of the BTC tail is expected 
to reflect the hyporheic exchange process (e.g., Drummond et al., 2012; Haggerty et al., 2002; Wörman, 2002), 
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which was the focus of this study. The injected mass and distance from the upstream fluorimeter varied among 
the stream reaches and were decided based on the estimated discharge and stream velocity at the time of the tracer 
test. The resistivity signal (mV) from the fluorimeters was transformed into the RWT concentration through a 
standard calibration curve prepared for a relevant concentration range using water from the different streams. In 
reach R1 and R6b, the upstream standard calibration curves were compromised, and the RWT concentrations 
were scaled in these streams, to gain 100% mass recovery along the reach and to achieve zero background con-
centration. The percentage mass recovery was calculated as follows:      BTC_down BTC_up100 /E Q C t dt Q C t dt , 
where  BTC_up1E C t  and  BTC_downE C t  are the observed RWT BTCs at the upstream measuring point and down-
stream measuring point, respectively, and the unknown discharge Q is assumed constant along the reach.

2.1.2.  Stream Bottom and Water Surface Profiles

The stream bottom profiles were surveyed using a Leica Sprinter 50 automatic leveling instrument (Leica Geo-
systems AG, Switzerland) every 0.5 or 1 m depending on the stream reach (∆x in Table 1). To gauge the stream 
water surface profile (WSP) and the average stream depth, the depth was measured at the same positions as the 
bottom measurements using a measuring rod. The slope (S) was taken as the linear trend in topography measure-
ments over the entire stream reach, where the length of the stream was taken as that of the thalweg. The height 
measurements had an instrumental accuracy of 2 mm, and we judged the accuracy of the stream-depth measure-
ments to be ±5 mm. Thus, in total, the WSPs were estimated to have an accuracy of ±7 mm. The exact distance 
between points could be calculated based on the distance between the digital stage and the leveling instrument 
and the angle between measured points. Each water elevation profile and stream bottom profile were measured for 
one or two days, and the respective tracer test was performed in the evening on the first day to ensure that the two 
methods captured the same hydraulic conditions. None of the profiles or connected tracer tests were performed 
during rainy conditions or shortly after rainfall; thus, the hydraulic conditions were considered stable. Profiles are 
presented in Figure S1, in the Supporting Information.

2.1.3.  Hydraulic Conductivity

Hydraulic conductivity,  m/sE K  , was measured at four to six cross-sections depending on the length of the stream 
reach. At each cross-section, measurements were made at three positions across the stream and at two depths (3 
and 7 cm) through falling head tests, using a piezometer. According to (Hvorslev, 1951), the flow out of the pie-
zometer at a constant hydraulic head pressure is:

        2
0

dh t
q t r FK H H t

dt
� (1)

where E r (m) is the radius of the piezometer, E H (t) (m) is the level of water in the container at the time E t (s), and 
0E H  (m) is the water level at time infinity, that is, at pressure equalization. E F (m) is a factor related to the shape 

Stream characteristics Surrounding environment Bed material E X   E m ∆x (m)

R1 Sinuous, riffle and pool with occasional cascades, pristine, perennial Coniferous forest Sand, gravel, and stones 273 0.5

R2a Meandering, riffle and pool with occasional cascades, pristine, 
perennial

Coniferous forest Sand, gravel, and stones 338 0.5

R2b Straight, riffle and pool, pristine Mixed forest Sand 288 1

R3 Straight, partly channelized with stone walls, occasional steps Agriculture Sand and gravel, clay in pools 197 0.5

R4 Sinuous, flat bottom, partly channelized with stone walls Mixed forest and agriculture Sand and gravel 578 1

R6a Straight, riffle and pool, pristine Coniferous forest Sand and gravel 386 0.5

R6b Sinuous, partly dense vegetation Agriculture Sand and gravel, clay in pools 495 1

R6c Straight, riffle and pool, ocational steps, pristine Mixed forest and agriculture Sand, gravel and stones, clay in pools 226 0.5

R6d Straight, channelized, partly dense vegetation Agriculture Clay and sand 208 0.5

R7 Straight, riffle and pool Mixed forest and agriculture Sand and gravel 204 0.5

Table 1 
Characteristics of Investigated Stream Reaches in Terms of Stream Hydrogeomorphology, Surrounding Environment, Bed Material, Stream Length (X) and Distance 
Between Two Measurements of the Topographical Survey (∆x)
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and dimensions of the piezometer opening equal to 
 



2

ln /
LE F

L r
 , where E L (m) is the length of the cylindrical 

opening. By setting the datum,   0 0E H  , the solution to Equation 1 becomes 
 



 
  
 
 

2
0

ln
H t FKE t
H r

 . The hydraulic 

conductivity was evaluated here by plotting 
  

 
 
 0

ln
H t

E
H

 as a function of E t after observations of the lowering of 

the water table during a certain time. The piezometer used here has  0.23E F  and has been utilized to measure 
hydraulic conductivity in previous studies (Morén et al., 2017; Riml et al., 2013). The final hydraulic conductivity 
of each reach was taken as the average of all measurements performed in each reach.

2.2.  Tracer Test Evaluation of HEF

2.2.1.  The ASP Model

The tracer test assessments were performed using a solute transport model accounting for HEF, which is referred 
to as the ASP model (Wörman et al., 2002). In the model, HEF is defined as purely advective, according to:


  

 
  

0Gn z G
t z� (2)

where E G (kg/m3) is the solute (bulk) concentration in the hyporheic zone, E n (−) is the porosity, E  (s) denotes the time 
since the water entered the zone and E z (m) is the curve-linear streamline coordinate. Accordingly, the solute con-
centration at a streamline end point, thus at the streambed interface, is denoted G T

T
,     , where E T  (s) is the total 

residence time of that streamline. By integrating over all possible streamlines, the flow-weighted average concen-
tration of the water exiting the streambed is obtained according to          


G T G t f T dTT T, ,  0  , where 

 E f T  is the flow-weighted residence time probability density function (PDF). From here on, the flow-weighted 
average of any parameter will be denoted using squared brackets,     0… …E f T dT . The flow through the hy-
porheic zone is then coupled with the solute transport in the stream according to:












           

C

t
U

C

x
E

C

x

P

A
W C t G t

T

2

2

1

2
, � (3)

where E C (kg/m3) is the solute concentration in the main channel at the site E x (m), E U (m/s) is the average stream 
velocity in the main channel, E E (m2/s) is the longitudinal dispersion coefficient, E P (m) is the wetted perimeter of 
the main channel and E A (m2) is the cross-sectional area of the stream. The discharge E Q UA (m3/s) is assumed to 
vary linearly along the reach according to   0 1E Q Q x  , where 0E Q  (m3/s) is the discharge at the upstream end of 
the reach and E  (1/m) is a dilution parameter. Note that in reach R1 and R6b, full mass recovery was assumed, and 
the dilution parameter was set to zero. The right-hand side of Equation 3 represents the solute flux across the stre-
ambed interface, and it scales linearly with the flow-weighted exchange velocity  E W  . The exchange velocity is 
defined as the Darcy velocity normal to the streambed according to      , 0yE W x V x y n  , where  , 0yE V x y  
(m/s) is the vertical pour velocity at the streambed and E  (−) is a constant that compensates for the fact that all 
streamlines do not enter the streambed perpendicular to the bed (Wörman et al., 2002). From Equations 2 and 3, 
it is clear that the hyporheic exchange is controlled by two main properties: how much water enters the hyporheic 
zone, that is, the average exchange velocity  E W  , and how long it stays there, that is, the residence time PDF, 

(E f T ). Therefore, these two parameters were the focus of the comparison between the two models presented in 
this study. We assumed a log normal distribution of residence times in the hyporheic zone because this has been 
shown to illustrate the hyporheic exchange patterns well, especially the so-called pumping mechanism (Cardenas 
& Wilson, 2004; Tonina & Buffington, 2011; Wörman et al., 2002). The distribution was quantified through the 
average residence time  E T  and coefficient of variation,   CVE T  (−), which is a measure of variance independent 
of the distribution mean. An exact solution to Equations 2 and 3 for a slug release was derived in the Laplace 
domain in Wörman et al. (2002). The solution is developed for a conservative solute and an instantaneous slug 
injection of mass E M (kg) according to      

0
0, ,ME C x t t

Q
 where  E t  is the Dirac pulse, and is based on the 

assumption that no solute exists in the stream or streambed prior to the injection (       , 0 , 0 0)E C x t G z t  . 
The Laplace transformed concentration in the main channel at point x and time t then becomes:
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   


  
                    

2

0

1, exp 1
2 2 21

pTM U U p P WC x s e x
E E E AEQ x� (4)

where E p is the Laplace parameter and the brackets     … …E f T dT  , as noted previously.

2.2.2.  Calibration and Sensitivity Analysis of ASP Model Parameters

To estimate the parameter values of the ASP model, a calibration against the RWT BTCs was performed. Before 
the calibration was performed, the measured BTCs were pre-processed by removing the parts of the tails that 
were considered below the detection limit. Since fluorimeters detect not only RWT, but also noise in the form of 
for example, light and turbidity, the detection limit was related to the observed variance in the logarithm of the 
BTC tail concentration. The variance of the BTC was naturally largest over the BTC peak and then decreased 
with the florescent concentration. However, as the florescent concentration of the tail approached the detection 
limit, the variance increased, reaching a plateau that corresponds to the noise of the measurements without effects 
of the variance of the trend (Figure S2). In reach, R6a, R6b, and R6c, BTC tails were cut slightly earlier than in 
other reaches because of noise that could be related to researchers walking in the stream while performing other 
measurements. In reach R2a, R3, and R7, all data were utilized in the calibration, since the plateau was never 
reached.

In the calibration procedure, parameters 0E Q  , E  , E U , E E ,  E W  ,  E T  , and   CVE T  were adjusted to minimize the error 
between the observed BTC and the simulated BTC, which is the BTC computed with Equation 4 and subsequent-
ly transformed back to the real domain. The injected mass was known, and we approximated the hydraulic radius 
PE
A

 with 1E
d

 since all studied streams were wide in relation to their depths. To emphasize the tail of the BTC in 

the calibration procedure, we employed a mixed optimization criterion with an object function that weights the 
error depending on its position on the BTC (Bottacin-Busolin et al., 2011). In this criterion, peak values on the 
BTC were compared linearly, while values on the tail and the rising limb were compared in logarithmic form. 
The threshold between the peak and the rest of the BTC was set to 20% of the highest observed concentration. A 
more detailed description of the object function and threshold is provided in previous articles (Bottacin-Busolin 
et al., 2011; Morén et al., 2017; Riml et al., 2013).

We also investigated the sensitivity of the model output to changes in the HEF model parameters. This was done 
through a Monte Carlo (MC) simulation, where parameters  ,E E W  ,  E T  , and   CVE T  were randomly selected from 
predefined log normal distributions. Because parameters controlling the bulk transport and the dilution of the 
solute are usually relatively well defined through tracer tests, they were not included in the analysis, that is, E U , 0E Q  , 
and E  were kept constant according to the optimized values. The modeled BTC, based on the random combination 
of parameters, was then compared to the observed tracer test BTC, and the calculated errors were plotted against 
each parameter in so-called dotty plots (Ward et al., 2017). If the error is relatively constant within the investigat-
ed parameter space and the dotty plot shows a wide minimum, the model is insensitive to changes in this parame-
ter. A common reason for uncertain parameter estimation is insensitivity to changes in one or several parameters 
with respect to the chosen error function. We also defined the parameter sets (  ,i iE E W  ,  iE T  , and   CV iE T  ) with 
error   min1.15iE e e  as behavioral, where minE e  is the smallest calculated error between the observed and calcu-
lated BTC. The behavioral parameter sets produce equally reasonable estimates of the observed BTC, which is 
a way to quantify the relative certainty of the tracer test calibration without being a formal statistical measure.

Since RWT has been shown to be adsorptive in some stream sediments (Runkel, ), an additional sensitivity anal-
ysis was performed considering the impact of reversible and irreversible instantaneous adsorption of RWT on the 
optimized ASP model parameters, and the accumulated mass recovery between two measuring points (Supporting 
Information, text S1, and Figures S3 and S4). Reversible adsorption was accounted for in the ASP model through 
a constant equilibrium coefficient defined as  adsorbed diluted/BE K C C  (e.g., Riml et al., 2013), while irreversible 
adsorption was defined through the first-order rate coefficient   1

BE s  (e.g., Keefe et al., 2004; Runkel, ).
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2.3.  The Multiscale HM Approach

The HM model for HEF is an exact solution to the continuity and momentum equations for steady, incompress-
ible groundwater flow in two dimensions. The model acknowledges the geomorphologic complexity of natural 
streambeds by treating the upper hydraulic head boundary and the resulting multiscale HEF as real-space signals, 
which are transformed into their power spectral densities and analyzed using power spectral theory. The model 
was supported by stream measurements independent of the stream tracer tests and thus offered the possibility to 
cross-validate the two approaches included in this study. To compare the outcome of the HM model with that of 
the ASP model, we used the HM model to derived both the flow-weighted average exchange velocity  E W  and the 
residence time PDF  E f T  , which are defined by the flow-weighted average residence time  E T  and the coefficient 
of variation   CVE T  .

2.3.1.  Longitudinal Head Variations at the Streambed Interface

The HM model accounts for dynamic and static hydraulic head fluctuations, which are transmitted from the open 
stream flow as driving boundary conditions of the hyporheic (groundwater) flow. The pressure distribution along 
the streambed generally consists of a hydrostatic part that represents the WSP and a deviation from the hydrostat-
ic head caused by the curvature of streamlines and stagnation of the open flow exactly at the streambed interface, 
which can be both positive and negative (Chow, 1959). In this study, the deviation from hydrostatic pressure in 
a stream cross-section was estimated using an empirically based equation consistent with previous attempts to 
model multiscale HEF (e.g., Stonedahl et al., 2010). The variation in the total hydraulic head along the streambed, 
 ,E h x  was defined according to:

             s d b d bh x h h y x d x C x y x� (5)

where the static hydraulic head     s bE h y x d x  and  bE y x  is the streambed elevation from a fixed datum. 
The dynamic head was defined as a scaling of the streambed elevation,    d d bE h C x y x  , where the dynamic 
head scaling factor,  dE C x  , was a modification of Fehlman's constant (Elliott & Brooks, 1997a, 1997b; Fehl-
man, 1985). The modified version, approximates the bed form height (as part of the hydrodynamic drag) using 
the standard deviation of the streambed topography and accounts for longitudinal variations in the stream depth, 
stream cross-sectional velocity, and topography (Stonedahl et al., 2010). This process yields a scaling factor that 
varies along the reach according to:

   
 

       

       










 
  
   
     

3
8

2

3
2

2 2 /
2 2 / 0.34

0.340.28
2 2

2 2 /
2 2 / 0.34

0

ˆˆ ˆˆ
ˆ

ˆ ˆˆ

4
ˆ

.3
ˆ

yb
yb

d
yb

yb
yb

x d x
x d x

U x
C x

g x
x d x

x d x

� (6)

where  ̂ ybE x  (m) is the standard deviation in streambed topography over a small distance, E x  , here set to 10 m and 
centralized around E x ,  ˆE d x  is the moving average of the stream depth over E x  and  ˆE U x  is the moving average of 
the stream velocity over E x  . Furthermore, the linear variation in stream velocity along the stream thalweg was cal-
culated based on continuity according to         0 1 / ( )E U x Q x w d x  , where both the discharge 0E Q  and the 
proportionality constant E  were evaluated using the ASP model. The factor      ASP /E U E U x  was introduced 
to account for an observed underestimation of the actual solute advection velocity, ASPE U  , due to, for example, 
stagnant pockets alongside the stream channel that were not accounted for by the variability in the cross-sectional 
area.   …E E  denotes the expected value of the variable within the brackets.

2.3.2.  The Flow-Weighted Average Exchange Velocity

The HM model used in this study is based on parallel derivation of the hyporheic exchange velocity in the real and 
spectral domains. The spectral approach was introduced to study the exchange velocity distributed over different 
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wavelengths, which clarifies the types of mechanisms and scales that should be emphasized in measurements and 
modeling efforts to provide pertinent reach-scale quantifications of HEF.

Before deriving the spectral model, we calculated the multiscale hyporheic exchange velocity in the real domain 
from an exact solution of the Laplace equation for steady incompressible flow,  2 0E h  (Wörman et al., 2006). 

The solution is based on a no-flow boundary at depth  E y  , specified in hydraulic head as dh

dy
y  0 , and 

an upper hydraulic head boundary condition stated as a Fourier sum according to:

  


 
     

 
1 ,

2, 0 sinN
i h i

i
h x y A x S� (7)

where ,h iE A  and iE  are the amplitude (m) and wavelength (m), respectively, of harmonic i. E S is the slope, as speci-
fied previously.E  The solution to the Laplace equation was combined with Darcy's law to derive the entire hypor-
heic flow field in two dimensions, that is, along and perpendicular to the average slope of a reach (Supporting 
Information, text S2). Similar to the ASP model, the hyporheic exchange velocity at the streambed interface was 

defined as the vertical velocity field component at  0E y  according to W x nV x y K
dh

dy
y y       , 0 0 , 

where K is the homogenous and isotropic saturated hydraulic conductivity of the streambed and we set the coef-
ficient   1E  . The final exchange velocity then becomes a Fourier sum according to:

      
 

 
    

 

,
1

22 sin ,h iN
i i

i i

AW x K x� (8)

where the factor is referred to as geological damping (−) and reflects the effects of the impermeable layer at depth 
 E y  :

   
 

 
 

 

 


 

1 exp 4 /
1 exp 4 /

i
i

i
� (9)

To average the exchange velocity along the streambed, we recognized that since the wavelengths of the included 
harmonics are even fractions of the longest wavelength, the flow-weighted average of  E W x  equals its standard 
deviation along the bed according to       W xE W x  (Morén et al., 2017). Furthermore, we utilized that the 
variance of a signal in space or time can be derived by integrating the power spectral density (PSD) of its constit-
uent frequencies (Stoica & Moses, 1997). Thus, by first deriving the PSD of  E W x  as a function of wavelength, 
denoted  WE S  and in units of    2m/s / 1 / mE  , the flow-weighted average exchange velocity can be expressed as:

 
 




 


     max

HM 2min
W

W x
S

W d� (10)

where E  (m) is the wavelength of the spectrum, between minE   =  Δ / 2E x  and  maxE X , where ΔE x  is the minimal 
distance between two observations in the interpolated elevation data (see section 2.3.3), and X is the total length 
of the reach. The index HME  represents the HM model and indicates the difference between this parameterization 
and the respective parameters of the ASP model (Section 2.2.1). A formal link can be created between the real and 
spectral representation of the exchange velocity by recognizing that the variance of a real single harmonic func-
tion is equal to both the squared amplitude divided by two and the integral of its PSD. This link can be defined 
both for the hydraulic head and for the exchange velocity according to:

    





2

2Δ
2

h i h i
i

i

A S
� (11)

    





2

2Δ
2

W i W i
i

i

A S
� (12)
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where      


   


 2 h i
W i i

i

A
E A K  is the amplitude of the velocity spectrum. Equations 11 and 12 were applied 

to calculate the entire hyporheic flow field from estimations of the hydraulic head power spectrum (Supporting 
Information, text S3). Furthermore, by rearranging and combining Equations 11 and 12, the hyporheic exchange 
velocity PSD can be separated into different parts according to:

     
          

   





2 2
22 d s yb

W
S

S K� (13)

where  ybE S  is the PSD of the streambed topography (m3) and   dE  (−) and   sE  (−) are conversion factors, 
converting the streambed topography gradients into hydraulic heads. The static conversion factor was defined in 

line with Mojarrad et al. (2019) according to    
 


 


 hs
s

yb

S
E

S
 , where  hsE S  (m3) is the PSD of the surface water 

profile       s bE h x y x d x  .   sE  is expected to range from low values at small spatial scales, where bottom 
topography fluctuations are considerably higher than the overlying WSP, to values approaching 1 at larger spatial 
scales, where the surface water profile is expected to follow landscape topography variations. We also introduced 

a dynamic conversion factor according to    
 


 


 hd
d

yb

S
E

S
 , where  hdE S  (m3) is the PSD of the dynamic head 

fluctuations      s d bE h x C x y x  . A comparison between  dE  and  sE  will provide information about the relative 
importance of static and dynamic heads as drivers of HEF across features of different wavelengths, and plotting 

 WE S  against wavelength illustrates which spatial scales are most important for the final average exchange ve-
locity,  HME W  .

2.3.3.  Power Spectrum Analysis and the Inclusion of Small Spatial Scales

The three power spectra needed to parameterize Equation 13 (and subsequently Equation 10), that is, the stream 
bottom elevation PSDs,   ,ybE S  the static head PSD,  hsE S  and the dynamic head PSD,  hdE S  , were estimated 
based on the surveyed stream geometry and using Welch's method (see the Text S3 in Supporting Informa-
tion S1). Before the PSDs were estimated, the stream bottom and WSP data were interpolated to provide the 
necessary equal distance between points, ΔE x  . The analysis then resulted in estimated PSDs with a minimum 
wavelength,  min 2ΔE x  , between 0.45 and 1.48 m for the different stream reaches. For the main part of the 
analysis, the original PSDs were used. However, since several studies have shown that spatial scales shorter than 
a couple of meters might be of great importance for the total hyporheic exchange (Gomez-Velez & Harvey, 2014; 
Morén et al., 2017; Stonedahl et al., 2013), we also investigated a method to include smaller scales by extrapola-
tion of the PSD to even shorter wavelengths. The method utilized the fact that many natural systems, including 
streambeds, show fractal behavior over the whole or parts of the measured range (e.g., Aubeneau et al., 2015; 
Hino, 1968; Turcotte, 1992; Wörman et al., 2007). In other words, the PSD generally follows a power law of the 
form    bE S a  . The power law equation can be used to generalize topographic features outside the observed 
scale range (Mojarrad et al., 2019; Morén et al., 2017), where E a and E b are constants. All PSDs evaluated in this 
study were fractal, with changes in the slope indicating multifractility (Figure S5 in Supporting Information S1). 
This change in slope was transitional in some cases but observed at approximately   7E d , which was suggested 
as an upper limit for the lowest wavelength range of multifractal streambed PSDs in Hino (1968). We, therefore, 
used the least squares method to find the linear trend of    7ybE S d  ,    7hsE S d  , and    7hdE S d  when 
plotted against wavelength in a log-log diagram. In reach R2b, however, no wavelengths lower than 7E d were 
measured, and a linear trend for    2ybE S m  ,    2hsE S m  , and    2hdE S m  was instead obtained. Based on 
the fitted linear trends (Table S1 in Supporting Information S1), the PSDs were extrapolated to a minimum wave-
length, minE  , of 1 cm, approximately representing the approximate diameter of gravel or pebbles. Subsequently, 
we investigated the effect of including the smaller scales on the total  HME W  and the ratio    /d sE W W  , where the 
average static exchange velocity  sE W  was calculated by setting   0dE  in Equation 13, and likewise, the average 
dynamic exchange velocity  dE W  was calculated by setting   0sE  . To further investigate the effect of different 
scales on the hyporheic exchange velocity,  HME W  and    /d sE W W  were calculated while increasing the upper 
limit of the integral of Equation 10 from  max minE  to  maxE X .
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2.3.4.  The Residence Time PDF

The distribution of residence times in the HM model was obtained by particle tracking through the 2D velocity 
field, which is provided in its complete form in the Supporting Information S1. After the velocity field was de-
rived, the particles were released at the top boundary (y = 0) every 5 cm along the entire length of each studied 
reach, and the resolution of the flow field was set to 5 mm. The flow-weighted PDF of residence times was 
defined according to:

     
          


       

50
1 1 1 1

p j j
j

j p j j p j j j j

f T W T
f T

f T W T f T W T T T
� (14)

where  p jE f T  is the geometrically weighted PDF of the hyporheic residence time. The subscript E p indicates that 
 p jE f T  was calculated from the ensemble of tracked particles, and the subscript E j ranges from 1 to 50 and repre-

sents bins in a histogram of the residence times of all tracked particles. Within each bin E j , the average residence 
time and exchange velocity were taken to define the pair jE T  and  jE W T  , associated with the probability  p jE f T  , 
which was estimated as the number of particles in each bin, normalized with the total number of tracked parti-
cles and the width of each bin. We then estimated the mean, TE  , and the standard deviation,  ,TE  representing the 
continuous flow-weighted PDF, by fitting it to the discrete representation of Equation 14. Finally, the average 
residence time  HME T  was calculated for a range of residence times between 10 and 106 s.

2.3.5.  Sensitivity Analysis of the HM Model

The parametrization of the multiscale model was performed mostly independently from the tracer test evaluation 
through distributed measurements of the hydraulic conductivity, K, and dense measurements of the streambed el-
evation  bE y x  and stream depth  E d x  . Elevation and depth measurements were then used together with discharge 
and velocity estimates from the tracer test to estimate the hydraulic head fluctuations (Section 2.3.1) and the as-
sociated PDFs (Section 2.3.4). Because the geologic factors, that is, porosity E n and depth of a streambed stratum 
E  , were not measured in situ, we tested the model sensitivity to relevant ranges of those parameters. Values of E n 
were set to 0.2, 0.3, 0.4, and 0.5, with the smallest representing unsorted gravel and the largest representing clay 
or packed moraine. The range of E  was set between 0.01 and 1 m, which are depths that have been observed in 
previous tracer studies when approximating the depth with      / 2E W T  (Morén et al., 2017). The resulting 
ranges of  HME W  and  HME T  were compared to optimized and behavioral values of  ASPE W  and  ASPE T  .

2.4.  Cross-Validation of the HM Model and the Tracer Test Assessment

To quantify the cross-validation of the HM model and the tracer test assessment, we defined and minimized an 
error that considered both the average exchange velocity and the average residence time according to:

   
 

   
 

          
        

HM ASP,opt HM SP,opt

ASP,opt ASP,opt

log log log log
.

log log
AW W T T

E
W T

� (15)

The logarithms in Equation 15 were introduced to give an equal weight between the average residence time and 
the average exchange velocity.  HME W  and  HME T  were calculated using the HM model and the ranges of E  and 

E n previously specified, while  ASP,optE W  and  ASP,optE T  were optimized from the tracer test using the ASP model. 
The parameter set ( HM, minEE W  ,  HM, minEE T  ,  minEE  , and minEE n  ), which is associated with the minimized error, minE E  , 
was subsequently referred to as the optimized result of the HM model.

A visual comparison between the behavioral HEF parameter sets of the ASP model (Section 2.2.2); and the range 
of possible HEF parameters resulting from using the HM model with relevant choices of hyporheic zone depth 
and porosity (Section 2.3.5); was performed. We also compared the full residence time PDFs, that is, behavioral 

 ASPE f T  and possible  HME f T  , resulting from the behavioral range of  ASPE T  and   ASPCVE T  and possible range 
of  HME T  and   HMCVE T  , respectively. To illustrate the upper and lower boundaries of the behavioral  ASPE f T  
we selected the maximum and minimum probability density of each residence time E T  . The same procedure was 
performed to illustrate the range of  HME f T  resulting from different combinations of E  and E n .
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2.5.  Generalizing Hyporheic Exchange at the Reach Scale

To generalize the insights that can be gained from cross-validating the two approaches, we used Buckingham's 
π theorm to define and teste a number of physical relationships between reach-averaged HEF parameters and 
hydraulic and geomorphological characteristics that can be measured in the stream. The purpose of applying this 
theorem is to identify the least number of independent, dimensionless parameters of the problem. The average 

exchange velocity normalized with the average hydraulic conductivity,  WE
K

 , was selected as a fundamental de-
pendent dimensionless parameter. By closely studying the integral that appears when Equation 13 is substituted 
into Equation 10, eight important, reach-averaged parameters (   , , , , , , ,y hb sE K g U d X ) were identified (see the 
Text S4 in Supporting Information S1). From these eight parameters, we created seven dimensionless groups and 
statistically tested the following functional relationship:

    


    
 
 

2
, , , , , ,y h h y hb s s b s

yb

W Uf
K d d d dg X X� (16)

where 
2UE

dg
 is the squared Froude number. The importance of the independent parameter groups for the dimen-

sionless average exchange velocity, and the agreement between models, was tested systematically by separately 

plotting  WE
K

 against the independent parameters.

3.  Results
3.1.  Field Experiments and Tracer Test Evaluation

The evaluation of the tracer test using the ASP model is visualized in Figure S6. All tracer tests were performed 
under low-flow conditions, and the discharges varied between 0.003  and 0.11 m3/s among reaches (Table 2). 
Both stream depths and stream velocities were thus rather low, with the former varying between 0.12 and 0.56 m 
and the latter varying between 0.02 and 0.17 m/s. In general, the streams with high stream velocity also had 
comparably high dispersion. However, one exception was R6b, a meandering agricultural reach with low flow 
velocity that was densely vegetated at the time of the tracer test; where the dispersion was high, although the 
velocity was low.

Tracer test assessment Independent measurement

0E Q   3 /E m s E  2 /E m s U  /E m s  E ASPW   /E m s  E ASPT   E hr   E
ASP

CV T   E E θ  E E K   /E m s E w (m)E d  E mE S  E E s  E

R1 0.012 0.41 0.164 4.18E-06 1.3 7.56E + 00 0 3.03E-04 ± 1.4E-04 1.9 0.12 2.44 1.41

R2a 0.005 0.12 0.044 6.66E-06 107 4.48E + 02 8.39E-04 3.36E-04 ± 8.0E-05 2 0.14 1.66 1.69

R2b 0.005 0.042 0.022 2.94E-07 7.9 1.70E-01 3.9E-09 3.37E-04 ± 1.17E-04 2.3 0.19 0.09 1.01

R3 0.005 0.066 0.018 9.08E-07 36.4 2.10E + 00 7.9E-06 3.55E-04 ± 1.6E-04 2.2 0.2 0. 12 1.04

R4 0.109 0.34 0.113 3.67E-05 0.7 1.18E + 02 2.7E-04 4.72E-04 ± 1.8E-04 6.3 0.45 0. 29 1.10

R6a 0.003 0.042 0.016 2.25E-06 11.9 2.60E + 01 4.7E-04 5.44E-04 ± 1.4E-04 2.7 0.18 0. 26 1.05

R6b 0.014 0.16 0.016 1.83E-06 40.7 3.41E + 01 0 5.76E-04 ± 1.9E-04 5.3 0.34 0.004 1.10

R6ca 0.065 0.06 0.072 2.58E-04 0.1 6.20E + 00 2.1E-08 5.13E-04b ± 1.5E-04 - 0.34 0. 43 1.03

R6d 0.099 0.04 0.087 6.00E-04 0.1 6.20E + 00 1.8E-04 6.86E-04b ± 5.6E-04 - 0.56 0. 08 1.01

R7 0.041 0.32 0.101 7.31E-06 25.4 2.40E + 02 1.8E-05 9.9E-04 ± 1.5E-04 2.7 0.18 0. 49 1.01

Note. For E K , ±values represent the standard deviation of the measurements within in each reach.
aReach R6c was optimized based on a single downstream BTC. bHydraulic conductivity was measured in 2009 with the same device but by other researchers.

Table 2 
Parameters From the Tracer Test Assessment Including the Discharge at the Injection Point 0E Q  , Dispersion E E , In-Stream Velocity E U , Average Hyporheic Exchange 
Velocity  ASPE W  , Average Residence Time  ASP,E T  and the Coefficient of Variation   ASP

CVE T  ; and Average Independently Measured Stream Characteristics 
Including the Hydraulic Conductivity E K , Stream Width ,E w  Stream Depth E d , Slope E S , and Sinuosity E s
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Magnitudes of optimized HEF parameters were within expected ranges, and among reaches, the average ex-
change velocity,  ASPE W  , varied between 2.9E-07 and 6.0E-04 m/s, while the average residence time,  ASPE T  , 
varied between approximately 0.1 and 100 h (Table 2). In streams with the largest discharges (R4, R6c, and R6d), 
exchange velocities were relatively high and residence times were relatively low compared to other reaches in 
both this study and previous studies (Morén et al., 2017; Riml et al., 2013; Wörman et al., 2002).

The performed MC-analysis focused on the parameters controlling the spread of the solute that is,  ASPE W  ,  ASPE T  , 
  ASPCVE T  , and E E since the stream discharge and velocity was considered more sensitive. According to the MC 

analysis, the two most sensitive parameters of the four tested were E E and  ASPE W  , for which the dotty plots showed 
a distinct peak in most reaches (Figure S7 in Supporting Information S1). Compared to changes in E E and  ASPE W  , 
the model appeared less sensitive to changes in  ASPE T  and   ASPCVE T  , resulting in large parameter ranges in the 
behavioral models (Figure S7 in Supporting Information S1). In particular,   ASPCVE T  could take almost any 
value within the investigated range in many of the reaches, while the optimization of  ASPE T  was mainly uncertain 
in reaches R3, R7, and R6b. In reaches R2b, R6c, and R6d, the range was relatively well constrained for both 
 ASPE T  and   ASPCVE T  .

The independently measured hydraulic conductivity did not differ greatly among the reaches and ranged between 
5.7E-05 and 9.9E-04 m/s, which corresponds to loam or sand. This result is in line with previous observations in 
streambeds using the method of falling head slug tests, both within the studied catchments (Morén et al., 2017; 
Riml et al., 2013) and in other regions (Stewardson et al., 2016; Ward & Packman, 2019).

3.2.  Comparing the HM and ASP Model Results

After evaluating the key HEF parameters using the ASP model, the equivalent parameters were estimated (most-
ly) independently using the HM model. To compare the results, a sensitivity analysis was performed, evaluating 
the effect of the hyporheic zone depth and streambed porosity on the HM model results and the influence of these 
assumptions on the agreement with the ASP model results.

The flow-weighted average exchange velocity,  HME W  , is a Darcy velocity and thus independent on the streambed 
porosity. However, the sensitivity analysis showed that  HME W  was largely dependent on the hyporheic zone 
depth E  . As the depth increased,  HME W  increased, until it reached a plateau where the damping effect of the 
constrained hyporheic zone depth was negligible and the average hyporheic exchange velocity was conceived as 
being controlled by only the pressure variations at the streambed interface and the hydraulic conductivity of the 
sediments. In four of ten investigated reaches (R1, R3, R6b, and R7), this plateau occurred within the boundaries 
representing the behavioral values of  ASPE W  (Figure 1), indicating agreement between the two model approaches 
independently of the assumed hyporheic zone depth. In three reaches (R2a, R2b, and R6a), relatively shallow 
hyporheic zone depths were needed for  HME W  to fall within the behavioral boundaries of  ASPE W  . The hyporheic 
zone depth that corresponded to an exact agreement between  HME W  and the optimized  ASPE W  varied between 
0.03 and 0.25 m. In the three reaches with the largest stream discharges and cross-sectional areas, R4, R6c, and 
R6d,  HME W  was considerably lower than  ASPE W  , and an agreement between the two models was not possible 
by merely changing E  (Figure 1) or varying the average hydraulic conductivity within the confidence intervals.

The sensitivity analysis further shows that the average hyporheic residence time  HME T  was relatively insensitive 
to geological changes, although a slight increase in  HME T  with E  and E n can be identified in some of the reaches 
(Figure S8 in Supporting Information S1). In general, these results indicate that changes in E  and E n within the 
HM model did not control the agreement between the two models to a large extent. In four of the ten investigated 
reaches, R3, R6a, R6b, and R7, most combinations of E  and E n resulted in  HME T  within the boundaries of the be-
havioral  ASPE T  , and in reach R2a,  HME T  was slightly lower than the behavioral  ASPE T  . However, in most reaches, 
 HME T  was higher than the behavioral  ASPE T  . In R4, R6c, and R6d, which were the largest reaches in terms of 
discharge and cross-sectional area, the difference was substantial, while in R1 and R2b, the ratio    HM ASP/E T T  
was less than 10.

To understand the causes of the observed differences between  HME T  and the optimized  ASPE T  , we also com-
pared the full distribution of residence times,  HME f T  and  ASPE f T  . Figure 2 shows that  HME f T  and  ASPE f T  
partly agree but that deviations also exist in all reaches, mainly related to the largest values of E T  , which have 
the lowest probability densities but may have disproportional influences on the average values. In reaches, R4, 
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Figure 1.  Flow weighted average hyporheic exchange velocity derived with the HM model  HM(E W  ) as a function of hyporheic zone depth. Horizontal lines represent 
the optimized  ASPE W  (black solid lines) and the boundaries of the  ASPE W  considered behavioral (black dashed lines), which are independent from the hyporheic zone 
depth. The blue vertical lines represent the depth  minEE  , leading to an optimal fit between the two models by minimization of the error defined by Equation 15.
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Figure 2.  Hyporheic residence time PDFs derived with the ASP model supported by tracer data and the HM model supported by independent hydromorphologic data. 
The optimized ASP model (black solid line) is surrounded by a gray field that represents the maximum and minimum behavioral probability density for each residence 
time. The red field represents the maximum and minimum probability density derived with the HM model using a range of different porosities and hyporheic exchange 
depth.
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R6c, and R6d, the whole distribution,  HME f T  , was slightly shifted to the right compared to  ASPE f T  , that is, 
 , HM , ASPT TE  . In the rest of the reaches, the difference in the average residence time was explained by differ-
ences in the coefficient of variation, shown most clearly in R2b where all tested combinations of E  and E n resulted 
in  HME f T  much wider than the optimized and behavioral  ASPE f T  (Figure 2). Additionally, in reach R1, R3, 
R6a, and R6b   HMCVE T  was larger than the optimized   ASPCVE T  (Figure S9 in Supporting Information S1), but 
the evaluated   ASPCVE T  was uncertain according to the MC analysis (Figure S7 in Supporting Information S1), 
resulting in behavioral  ASPE f T  that covers large intervals and overlapping red and gray fields in Figure 2.

The results of the cross-validation (Section 2.4) are illustrated in Figure 3, where the parameterization of the HM 
model that minimizes the combined error (i.e.,  HM, minEE W  ,  HM, minEE T  , and   HM, minCV EE T  , calculated using hy-
porheic zone depth  minEE  and porosity minEE n  ) is plotted against parameters of the optimized ASP model. The two 
models showed agreement in terms of the average exchange velocity (Figure 3a), increasing the confidence that 
the presented values are relevant quantifications of the transversal flux across the streambed. More uncertainty 

Figure 3.  Comparison of the optimized ASP model and HM model in terms of (a) the average exchange velocity  E W  , (b) the average residence time  E T  and (c) the 
coefficient of variation   CVE T  . The HM model was parameterized with independent measurements of streambed topography and hydraulic conductivity, and ε and n 
were chosen to minimize the combined error (Equation 15). Horizontal error bars represent behavioral parameters of the ASP model, and vertical error bars represent 
model sensitivity related to the hyporheic zone depth ε, which varies between 0.01 and 1 m, and the porosity E n , which varies between 0.2 and 0.5.
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was however related to the distribution of residence times, as indicated by the discrepancies shown in Figures 3b 
and 3c. Furthermore, Figure 3 illustrates the smaller range of values resulting from the HM model compared to 
the ASP model, that is, that the largest  ASPE W  and the smallest  ASPE T  and   ASPCVE T  were not captured by the 
HM model. The two models showed the best agreement in R3, R6a, R7, and R2b, where minE E  , in general, was low 
compared to that in the other reaches. However, even in these reaches, there was a large deviation in the coeffi-
cient of variation. minE E  was largest in reaches R4, R6c, and R6d, which were the largest reaches in terms of both 
discharge and average cross-sectional area.

3.3.  Hyporheic Exchange Mechanisms and Scale Dependency

We utilized the HM model presented here to investigate the spectral distribution of HEF and to decompose the 
static and dynamic head drivers of the flow into different spatial scales. Furthermore, we tested how extrapolation 
of the topography and hydraulic head spectra to wavelengths of 1 cm affected the relative importance of static 
head-driven exchange versus dynamic head-driven exchange and to determine if it could improve the agreement 
between the two tested approaches.

The results show that the exchange spectrum  WE S  (Equation 13), which reflects the HEF as a function of wave-
length, was curve-shaped with maximum values at wavelengths between 0.2 and 3.2 m (Figure 4). The exchange 
spectra further show that the static head-driven hyporheic exchange velocity was much higher than the dynamic 
head-driven velocity across all observed spatial scales (Figure 4). However, when the spectra were extrapolated 
to non-observed spatial scales, the dynamic and static exchange spectra intersects in some of the reaches, which 
indicates that the dynamic head-driven hyporheic exchange velocity could be dominant at scales smaller than 
approximately 10 cm.

The effect that small topographical scales can have on the average exchange velocity was tested by integrating 
the spectra according to Equation 10 using (a) an increased upper cutoff, maxE  (Figure 5a), and (b) a decreased 
lower cutoff minE  (Figures 5b and 5c). This analysis showed that small scales dominated the exchange. When minE  
was set to 1 cm and the effect of the upper wavelength limit maxE  was analyzed, features with wavelengths smaller 
than five meters accounted for more than 90% of the total  HME W  . The result can be observed in Figure 5a as the 
constant value of  HME W  that was found in all reaches at  max 5E  m (and in most reaches at even lower maxE  ), 
indicating that the inclusion of additional larger spatial scales (i.e., larger wavelengths) did not contribute signif-
icantly to the exchange velocity. In contrast, when minE  was evaluated, the analysis showed that  HME W  increased 
when smaller scales were included compared to the measured value, but it also reached a plateau relatively fast 
at a wavelength of approximately 10 cm in most reaches (Figure 5b). This indicates that features of length 10 cm 
or shorter have little impact on the average exchange velocity and that observed spatial scales were sufficient to 
evaluate  E W  . Furthermore, this finding indicates that in the reaches where an agreement between the two models 
was not possible (R4, R6c, and R6d), the increase in  HME W  from the inclusion of smaller spatial scales did not 
overcome the deviation; and in most of the reaches where  HME W  and  ASPE W  agreed,  HME W  remained within the 
boundaries of the behavioral  ASPE W  even when smaller spatial scales were included (Figure S10 in Supporting 
Information S1). However, in reach R6b and R2b,  HME W  increased by a factor of approximately 8 and 5, respec-
tively, when including scales down to 1 cm, which yielded a  HME W  that was slightly higher than the behavioral 
 ASPE W  . Furthermore, in reach R1,  HME W  also increased by a factor of approximately 5, but remained within the 
boundaries of the behavioral  ASPE W  , which were relatively wide.

When using the observed streambed topography to calculate  dE W  and  sE W  , the ratio between them was below 
one in all reaches, indicating that static head exchange was dominant. The relative contribution of the dynamic 
head fluctuations did increase when minE  was decreased, highlighting a higher relative importance of dynamic 
head variations for hyporheic exchange velocities as smaller spatial scales were included. However,    /d sE W W  
only exceeded one in two of the reaches (R6a and R2b), indicating a dominance of static head-driven hyporheic 
exchange in the majority of the reaches regardless of the limiting lower wavelength (Figure 5c). In reaches R6a 
and R2b, a dominance of the dynamically driven HEF was found when including wavelengths smaller than 5 and 
2 cm, respectively.
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Figure 4.  Estimated dynamic, static, and total exchange spectra based on observed data only (solid lines) and extrapolated to a wavelength of 1 cm (dashed lines). Note 
that the blue curve is hidden under the black for the main part of the larger wavelengths.
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4.  Discussion
In this study, we employed two considerably different approaches to quantify the HEF in 10 stream reaches with 
varying characteristics. Both approaches expressed the advective component of hyporheic flow along a distri-
bution of streamlines within the stream bed but the ASP model induced parameters from a tracer test; while the 
HM model deducted HEF-parameters from independent measurements of the streambed topography and WSP 
along the stream thalweg. Our results showed that the two approaches could be cross-validated in most investi-
gated streams, in terms of the average hyporheic exchange velocity, while more variation was observed when the 
residence time PDFs were compared. The cross-validation indicates that HEF is mainly driven by head variations 
along the streambed interface that are created by hydrodynamic effects or gradient variations in the WSP. This 
finding supports previous studies that have interpreted results from the ASP model or other similar phenomeno-
logical models as estimates of physical quantities such as the transversal flux across the streambed and average 
residence times within it.

Figure 5.  Flow weighted average exchange velocity as a function of different wavelength cutoffs in the exchange spectrum, for all reaches. Specifically, (a) the effect 
of maximum wavelength maxE  on the exchange velocity relative to the maximum exchange velocity   HM, XmaxE W  ; (b) the effect of the exchange spectrum minimum 
wavelength minE  on the total average exchange velocity and (c) the ratio between dynamic head-driven exchange and static head driven exchange.
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4.1.  Geomorphological and Hydraulic Parameters Controlling Reach-Scale HEF

The cross-validation of the two models supports the generalization of the relationships between the dimension-
less average exchange velocity   /E W K (dependent parameter) and seven (independent) dimensionless parame-
ters appearing in the HM model, that is, 

    


, , , , , , andy h h y hb s s b s

yb
E Fr

d d d X X
 (Section 2.5). In this section, we 

mainly discuss the relationship with the Froude number, which we consider the strongest of the investigated 
cases, while the full results are presented in the Supporting Information (Figure S11 in Supporting Informa-

tion S1). We observed a general increase in  HMWE
K

 with 2E Fr  (Figure 6), which agrees with previous research 
(Sawyer et al., 2011; Wörman et al., 2002). This finding reflects the impact of drag over bed forms, as math-
ematically described in Equation 6, but can also be related to factors controlling the variations in the WSP, as 
discussed in for example, Mojarrad et  al.  (2019) and Sawyer et  al.  (2011). According to the theory of open 
channel hydraulics, the gradient in the WSP over a short distance depends on the Froude number according to 
             2/ / / 1 1 / 1b bE y d x y x Fr  , implying that the static head conversion factor increase with an 

increase in 2E Fr  in subcritical flow conditions and decreases with an increase in 2E Fr  in supercritical flow con-
ditions. Since we detected subcritical conditions in all investigated streams, it is possible that both static head 
gradients and dynamic head gradients, which both increase with 2E Fr  , are responsible for the relationship observed 
in Figure 6.

From studying the other relationships in Figure S11 in Supporting Information S1, we noticed a positive corre-
lation between the dimensionless average exchange velocity and the standard deviation of the detrended stream 
bottom and WSP, regardless of whether it was normalized with stream depth or stream length. However, this trend 
was not observed for the reaches with the worst agreement between the two modeling approaches (reaches R4, 
R6c, and R6d). Since low 

 hsE
d

 is an indicator of high relative submergence of bed forms, this result implies only 
slight variations in the WSP in these reaches and a potential for dynamic head gradients to dominate as drivers of 
HEF. However, the observed uncertainty in the relationships shows that the normalized standard deviation cannot 
alone represent the topographical variations and explain the variability in  E W  /K between reaches and that the 

Figure 6.  Dimensionless average exchange velocity <W>/K derived with the ASP model and HM model as a function of the 
Froude number. Vertical lines between triangles and circles indicate that the two markers represent the same reach. Reaches 
are also marked with different colors according to the legend.
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distribution of head gradients along the streambed and across different wavelengths (included in the HM model) 
is also important to consider to exactly quantify the average hyporheic exchange velocity. Nevertheless, the iden-
tified links between   /E W K and reach-averaged dimensionless characteristics can be utilized as the first indicator 
of HEF or to reduce uncertainty when evaluating HEF using transport models to interpret tracer tests. However, 
first, a larger data set than the 10 reaches investigated here and that is extracted from an even wider range of hydro 
geomorphologic conditions is needed to more generally establish the relationships.

4.2.  Processes Induced From Tracer Tests That Are Not Represented by the HM Model

This study showed that the two models could be cross-validated in terms of the average exchange velocity, but 
that uncertainties existed, mainly related to the residence time PDFs in the hyporheic zone. An explanation of 
these uncertainties is that we here interpreted all retention of the tracer BTC as HEF driven by head fluctuations 
at the streambed interface (pumping), while in reality the retention might be caused by other processes, that are 
not represented by the HM model.

One such mechanism is turbulent diffusion, which mainly occurs in the upper part of the sediment and results in 
short timescales and fast exchange velocities. It can be important both in flat bed streams, where it is assumed 
to dominate the HEF, and in highly permeable beds with bed forms, where it may further enhance the exchange 
velocity (e.g., Grant et al., 2018; Packman et al., 2004). The exclusion of this mechanism from the HM model 
may explain the lower  HME W  compared to  ASPE W  and higher  HME T  compared to  ASPE T  in reaches R4, R6c, and 
R6d. This theory is strengthened by the fact that these three reaches have the highest Reynolds numbers, defined 
as Re /E Ud  , where E  (m2/s) is the kinematic viscosity (Figure S12 in Supporting Information S1). A high ReE  
indicates a high turbulent diffusion coefficient, which is used to quantify turbulent diffusion across the streambed 
interface (e.g., Packman et al., 2004). However, the generally positive relationship between ReE  and  HM /E W K , 
which has been observed previously by Grant et al. (2018) and Packman et al. (2004), could also reflect highly 
dynamic head-driven exchange due to its proportionality to U (Equation 6). Considering the characteristics of the 
streambed sediment, turbulence could be important in R6c and R4, where the streambed sediment consisted of 
washed-out gravel and stones in the steeper parts of the reaches, but was less likely in reach R6d, where sediments 
were more clayey.

Another alternative mechanism that could explain the fact that  HME W  was lower than  ASPE W  and that  HME T  was 
higher than  ASPE T  , in the three reaches R4, R6c and R6d could be the exchange with stagnant surface water. This 
retention mechanism can have significant effects on tracer BTCs in streams with low gradients, dense in-stream 
vegetation and deep water (Briggs et al., 2009; Johnson et al., 2014), similar to the conditions observed in reach 
R6d. In addition, lateral hyporheic flow, for example flow through stream meanders, is a mechanism that was 
not accounted for by the two-dimensional HM model. This could explain the high residence times in reach R2a, 
concluded by the ASP model, since this reach was among the steepest reaches and had the highest sinuosity of 
1.69 (Table 2), which provides potentially long flow paths through meander bars.

4.3.  Uncertainty in the Cross-Validation of the Residence Time Distribution

When comparing the entire RTDs derived with the two models, the results indicated that although the mean 
values of the distributions showed agreement, the variance in the distributions varied substantially. This variation 
was manifested as large differences between   HMCVE T  and   ASPCVE T  and, in some cases, between  HME T  and 
 ASPE T  .

These uncertainties could be related to uncertainties in the data and the evaluation of the two models, such as 
the estimation of  ASPE T  and   ASPCVE T  , which was uncertain according to the MC-analysis. There is a statisti-
cal relationship between the average residence time and the variance in a log-normal PDF (Wörman & Wach-
niew, 2007), which can cause equifinality in the model optimization toward the tracer BTC, thus several different 
pairs       ASP ASP, CVE T T  , that lead to exactly the same model fit. Furthermore, due to its documented adsorp-
tive characteristics (Runkel, 2015), the use of RWT as a conservative tracer to estimate HEF variables is a source 
of uncertainty for the ASP model results. However, the mass conservation between the sampling points was never 
below 72%, and was only below 100% in three of the reaches, indicating that adsorption has a minor impact on 
the transport of RWT in the streams investigated here (Table S1 in Supporting Information S1). The observed 
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mass loss was explained in the ASP model as dilution, which is reasonable given that the three reaches with the 
lowest mass recovery (R2a, R6a, and R4) were among the steepest reaches, and could thus be expected to receive 
relatively high fluxes of upwelling groundwater. However, a sensitivity analysis of the impact of reversible and 
irreversible sorption on the ASP model variables showed that reversible sorption, or relatively low levels of irre-
versible sorption, might exist in reach R2b, and possibly in the other reaches. However, adsorption had relatively 
small impact on the other model variables when accounted for in the ASP model and would therefore not change 
the general results of the study (Text S3, Table S2 in Supporting Information S1).

Uncertainty in the cross-validation can also be related to uncertainties in how the residence time PDFs were de-
fined in the HM model, that is, in the particle tracking routine that did not account for variations in the hydraulic 
conductivity within the streambed. Including the heterogeneity of streambed sediment in models for HEF can 
cause both increasing and decreasing residence times (compared to homogenous sediments) depending on the 
relative positions of the heterogeneities (Cardenas & Wilson, 2004). Furthermore, the upper boundary condition 
of the MH model was defined from the topography PSD, which describes only the main characteristics of the hy-
draulic head patterns along the reaches. Studies have shown that the longest hyporheic flow paths, which are often 
related to the longest residence times, start at a few specific locations along the streambed where head gradients 
induced by features of different sizes reinforce each other (Herzog et al., 2019). In the HM model, the longest 
flow paths were directly related to the longest PSD wavelength (i.e., steam length), and the random interactions 
between features of different wavelengths were not accounted for.

Nevertheless, in some reaches, even the wide range of residence time PDFs considered behavioral according 
to the ASP model did not agree with those obtained with the HM model, indicating that conceptual differences 
between the two models also contributed to the disagreement and that different model frameworks emphasize 
different parts of the residence time PDF in the hyporheic zone. Tracer test BTCs reflect the part of the solute 
that returns to the stream within the observed reach length and observation time period, and the subsequent 
assessment is highly affected by instrumental detection limits (Bencala et al., 2011) and truncation of the BTC 
tail (Drummond et al., 2012). As a result, the longer time scales of the residence time PDF are often omitted, 
which might lead to residence times that are controlled mainly by the length of the stream reach, advective travel 
time ( /E X U ) or window of detection, that is, time from the first arrival to last detection of the tracer (Gooseff 
et al., 2013; Harvey & Wagner, 2000; Schmadel et al., 2016). In this study, the reaches with the lowest /E X U (R6c 
and R6d) had the lowest evaluated  ASPE T  and the largest differences between the ASP model and HM model in 
terms of both residence time and exchange velocity. The generally wider RTDs provided by the HM model com-
pared to the ASP model could thus be explained by limitations in the window of detection.

In contrast to solute transport models accounting for HEF, physically based models tend to capture higher resi-
dence times because they are limited by their resolution. In a multiscale model, such as the HM model presented 
here, the resolution is represented by the ranges of wavelengths in the PSDs, which are limited by the resolutions 
of the measured topography and WSP. We tested the effect of including smaller scales than those measured by 
extrapolating the stream bottom elevation PSD, which resulted in a slightly higher average exchange velocity, 
indicating a slightly lower average residence time and thus better agreement with the ASP model results.

4.4.  Impacts of Different Spatial Scales on the Average Exchange Velocity

In addition to cross-validating the two models, another objective of this study was to use the HM model to ex-
amine the relative importance of different spatial scales for the HEF in the different reaches. The results indicate 
that more than 90% of the hyporheic exchange was accounted for in the HM model even when wavelengths larger 
than 5 m were excluded. This was true for all reaches and agrees with previous studies showing that flow-induced 
by small-scale features dominates the HEF (Gomez-Velez & Harvey, 2014; Stonedahl et al., 2012, 2013; Wör-
man et al., 2006). These small scales correspond to geomorphological features such as bed forms or obstacles 
in the form of wooden debris and boulders, with lengths of decimeters to several meters. The result reflects that 
the distribution of HEF across different wavelengths was largely controlled by the depth of the hyporheic zone, 
which dampens the velocity along flow paths associated with  E  , through the geological damping factor 
(Equation 9). For the analysis, we used values of  minEE  that led to optimal agreement between the HM model and 
the ASP model and varied between 0.04 and 0.68 m among reaches.
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The dominance of HEF driven by head gradients over small features highlights the importance of high-density 
and high-quality topographical input data when modeling HEF using a deductive model such as the HM model 
presented here. Since HEF is driven by head gradients, that is, an elevation difference over a distance, small un-
certainties in topographical input data can have a large impact on the result. In general, we estimated an error of 
±2 mm in the bottom elevation measurements and an error of ±7 mm in the WSP measurements. This error could 
be problematic considering that the total elevation drop along the entire length of the reach, that is, E SX , which 
restricts the possible variation in the WSP, was lower than 1 m in several reaches and as low as 2 cm in R6b, which 
had the lowest slope. When analyzing the three spectra employed as input in the HM model, we discovered pos-
sible measurement errors. As expected, the streambed elevation PSDs, ybE S  , generally had higher magnitudes than 
the surface water profile PSDs, hsE S  , reflecting higher variations in the streambed elevation compared to the WSP. 
However, an unexpected increase in the static conversion factor, defined as   /h h ys s bE S S  , above one was ob-
served at scales smaller than a few centimeters (Figure S13 in Supporting Information S1). This finding indicates 
that over these very short wavelengths, certain variations in the WSP exceeded those in the streambed. Whether 
these results reflect measurement errors, problems related to the extrapolation of the PSDs, or real gradients in 
the WSP is difficult to conclude with certainty. However, the results conclude that the utilization of emerging new 
methods for the collection of high-resolution topography data (Passalacqua et al., 2015; Woodget et al., 2017) 
would improve the certainty of the HM model. This utilization would also simplify the field measurements and 
motivate the use of the HM model or a similar multiscale model for parameterization of solute transport models 
traditionally parameterized through calibration against tracer tests.

4.5.  The Relative Importance of Static and Dynamic Exchange

When the originally measured topography and WSP were employed, our results indicate a dominance of static 
head-driven HEF in all reaches, independent of slope and discharge. The general dominance of static head fluc-
tuations over dynamic head fluctuations as drivers of HEF has been observed previously in mountainous catch-
ments (Marzadri et al., 2014; Mojarrad et al., 2019). In addition, measurements of static and dynamic head in a 
flume with riffle-pool characteristics showed general dominance of static head gradients; but also observed that 
the dynamic head gradients were allowed to dominate the HEF in deeper areas, where the overlying water surface 
was flat (Tonina & Buffington, 2007). One reason for the general dominance of the static head observed here 
could thus be the included spatial scales, that is, wavelengths in the HM model. Studies that reached the opposite 
conclusion, that is, that the dynamic head gradients dominated as drivers of hyporheic exchange over longer 
stream reaches, assumed that no static head gradients (except the average slope) existed across wavelengths 
smaller than a certain size (Gomez-Velez & Harvey, 2014; Stonedahl et al., 2012, 2013).

Some studies suggest that HEF is mainly driven by static gradients in high-order reaches, which are generally 
steep, have low discharge and exhibit low relative submergence of bed forms, but that dynamic head gradients 
successively take over the control of HEF when moving toward lower stream order reaches with lower slopes and 
higher discharges (Wondzell et al., 2019). In this study, the inclusion of smaller wavelengths in the hydraulic head 
PSD increased the    /d sE W W  ratio, but it was consistently smaller than one in all reaches except for reach R6b 
and R2b. According to the abovementioned theory by Wondzell et al. (2019), this result is probably attributed to 
the low slopes of reaches R6b and R2b, which produce static head gradients that are considerably restricted; thus, 
a HEF that is mainly driven by head gradients created when stream flow interacts with small, submerged, bed 
forms and riffles. Once again, we notice that measurement errors might cause an overestimation of the static head 
gradients across the shortest wavelength and thus an underestimation of    /d sE W W  . Note also that this ratio de-
pends on Equation 6, which was originally developed empirically to explain the hydrodynamic head over triangu-
lar bed forms with an overlying flat water surface and constant hydraulic regime (Elliott & Brooks, 1997a, 1997b). 
Subsequently, the equation has been extended to account for the variations in stream depth and velocity along 
the reach and for more complex stream geomorphologies (Stonedahl et al., 2010). Although this formulation and 
other similar formulations have been employed in several studies (Marzadri et al., 2014; Mojarrad et al., 2019; 
Morén et al., 2017; Stonedahl et al., 2012; Wörman et al., 2006), they have, to our knowledge, not been validated 
against independent measurements, and might not be suitable after harmonics have been superimposed. If this 
is the case, it might also explain the discrepancy between the HM model results and the ASP model results in 
streams with high velocities and large relative submergence, where dynamic head fluctuations are most likely 
significant. Additional studies of the relationship are needed to be able to more correctly formulate the multiscale 
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variations in hydraulic head gradients at the streambed and consequently improve cross-validations of the type 
presented in this study.

5.  Conclusion
In this study, we investigated if two considerably different approaches for quantifying reach-averaged HEF could 
be cross-validated and showed that this case applied for the average exchange velocity but that more uncertainty 
was related to the cross-validation of the RTD. The results indicate that the presented multiscale HM model sup-
ported with independent hydromorphological data offers a physical explanation for the average exchange velocity 
obtained from stream tracer test assessments, in small alluvial streams, with low discharge, shallow depth, and 
moderate slope. In particular, this cross-validation was consistent with previous studies showing that the average 
hyporheic exchange velocity is largely controlled by gradients in the hydraulic head at the streambed interface. 
Furthermore, the results indicate that both the magnitude of the gradients and the distributions of gradients over 
differently sized geomorphologic features will influence the average of the HEF variables. The established link 
between the two models can, for example, help to facilitate generalization of HEF. The generalization provided 
in this study, showed that the dimensionless average exchange velocity increased with an increase in the squared 
Froude's number, even in streams where the static head variations along the stream bottom were shown to dom-
inate the exchange. The dimensionless average exchange velocity also increased with an increase in the standard 
deviation in the WSP.

The uncertainty in the cross-validation of the hyporheic RTD was reflected by the finding that the two tested 
approaches yielded comparable average residence times in only half of the investigated reaches, and that the co-
efficient of variation agreed to an even smaller extent. Specifically, the HM model resulted in wider distributions 
and higher average residence times than the tracer test assessment in some of the reaches. The difference could 
either be attributed to uncertainties in data and evaluation of the two models, or it could be because the two tested 
approaches generally empathize different parts of the hyporheic RTD. The lower limit of the RTD is constrained 
in mechanical models by the spatial resolution of the model, and the upper limit of the RTD can be difficult to 
capture with tracer tests due to a limited window of detection. Moreover, in the three reaches with the highest 
discharge, low relative roughness, and high Reynolds number, it was not possible to cross-validate the two ap-
proaches, even in terms of the average exchange velocity. This result could be attributed either to the notion that 
HEF consisted of multiple processes in those reaches, such as diffusive turbulence, lateral exchange, or exchange 
with stagnant surface water, or to a limited window of detection in these three reaches.

This study also included an analysis of how the quantified HEF was distributed over a range of spatial scales, and 
it led to two conclusions. First, features with wavelengths less than 5 m explained 90% of the hyporheic exchange 
velocity in the 10 investigated streams, and the inclusion of features with wavelengths smaller than 20 cm, con-
tributed only to a slight increase in exchange velocity in most of the reaches. Second, the static head-driven HEF 
dominated the dynamic head-driven HEF in all reaches and all measured scales. When scales smaller than the 
measured scales were included in the investigation, the dynamic head gradients dominated at scales less than ap-
proximately 10 cm, in 50% of the reaches. However, this small-scale domination only affected the dynamic con-
tribution to the average hyporheic exchange velocity in two of the reaches, which also had relatively low slopes. 
Although the spectral investigation revealed uncertainties in the results related to both the HM model formulation 
and measurement errors, it nevertheless illustrated the improved understanding that can be gained by cross-vali-
dating partly independent models. In the future, we suggest that similar studies be performed in different settings 
using newer, faster, and more accurate elevation measuring techniques.

Data Availability Statement
The data that was collected as part of this study is found in the published resource Morén, I. (2021). Hypor-
heic exchange flow studies in 10 small streams in south-east Sweden, 2017–2020, HydroShare, https://doi.
org/10.4211/hs.af43ffe74d1545f5a918a8af6031c33d. Prepared Matlab codes will be distributed on request by 
the corresponding author.
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